

## FEATURES

- 2 contact arrangements

4 Form C (for 5 A 250 V AC),
2 Form C (for 7 A 250 V AC)

- Excellent contact reliability by Au plating
- Environmentally friendly Cd-free contacts
- Coil breakdown detection function (AC type with LED only)
- Convenient Screw terminal sockets with finger protection also available
- Test button type available
- Built-in diode and CR for surge suppression type available


## TYPICAL APPLICATIONS

Control panels
Power supply units
Molding machines
Machine tools
Welding equipment
Agricultural equipment
Office equipment
Vending machines
Communications equipment
Amusement machines

## ORDERING INFORMATION



## SPECIFICATIONS

## Contacts

| Arrangement |  | 2 Form C | 4 Form C |
| :---: | :---: | :---: | :---: |
| Initial contact resistance, max. (By voltage drop 6 V DC 1 A) |  | $50 \mathrm{~m} \Omega$ |  |
| Contact material |  | Au plating Silver alloy <br> (Au plating type) Silver alloy <br> (without Au plating type) |  |
| Rating (resistive load) | Nominal switching capacity | 7A 250V AC | 5A 250V AC |
|  | Max. switching power | 1,750 VA | 1,250 VA |
|  | Max. switching voltage | 250 V AC |  |
|  | Max. switching current | 7 A | 5 A |
|  | Min. switching current*9 | 1 V 1 mA |  |
| Expected life (min. operations) | Mechanical (at 180 cpm ) | $2 \times 10^{7}$ |  |
|  | Electrical (at 20 cpm ) (resistive load) | $\begin{gathered} 10^{5} \\ (7 \mathrm{~A} 250 \mathrm{VAC}) \\ 5 \times 10^{5} \\ (5 \mathrm{~A} 250 \mathrm{~V} A C) \end{gathered}$ | $\begin{gathered} 10^{5} \\ (5 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}) \\ 2 \times 10^{5} \\ (3 \mathrm{~A} 250 \mathrm{~V} \text { AC) } \end{gathered}$ |
| Coil |  |  |  |
| Nominal operating power |  | 0.9W 1.2V A |  |

## Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{*} 4$ For the AC coil types, the operate/release time will differ depending on the phase.
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{\star 7}{ }^{*}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 4. Conditions for operation, transport and storage mentioned in NOTES
*9 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.


## Characteristics

|  |  |  | 2 Form C | 4 Form C |
| :---: | :---: | :---: | :---: | :---: |
| Max. operating speed |  |  | 20 cpm (at max. rating) |  |
| Initial insulation resistance*1 |  |  | Min. $100 \mathrm{M} \Omega$ at 500 V DC |  |
| Initial breakdown voltage*2 | Between open contacts |  | 1,000 Vrms for 1 min . |  |
|  | Between contact sets |  | 2,000 Vrms for 1 min . |  |
|  | Between contact and coil |  | 2,000 Vrms for 1 min . |  |
| Operate time*3 (at nominal voltage) |  |  | Max. $20 \mathrm{~ms}^{* 4}$ |  |
| Release time (without diode)*3 (at nominal voltage) |  |  | Max. $20 \mathrm{~ms}^{* 4}$ |  |
| Temperature rise, max. (at $70^{\circ} \mathrm{C}$ ) (at nominal voltage) |  |  | $60^{\circ} \mathrm{C}$ |  |
| Shock resistance | Functiona**5 |  | Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{10 G\} |  |
|  | Destructive*6 |  | Min. 1,000 m/s ${ }^{2}$ \{100 G\} |  |
| Vibration resistance | Functional*7 |  | 10 to 55 Hz at double amplitude of 1.0 mm |  |
|  | Destructive |  | 10 to 55 Hz at double amplitude of 1.0 mm |  |
| Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) |  | Ambient temp. | $\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$ |  |
|  |  | Humidity | 5 to 85\% R.H. |  |
| Unit weight | Without test button |  | Approx. 31g <br> 1.09 oz | Approx. 32g <br> 1.13 oz |
|  | Test button |  | Approx. 34g <br> 1.20 oz | Approx. 34g 1.20 oz |

HJ RELAY
ASCT1B259E '03.2

## TYPES

[Au plating type]

## 1. Plug-in type

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-DC 12V-6 | HJ4-DC 12V-6 |
| 24V DC | HJ2-DC 24V-6 | HJ4-DC 24V-6 |
| 48V DC | HJ2-DC 48V-6 | HJ4-DC 48V-6 |
| 110V DC | HJ2-DC110V-6 | HJ4-DC110V-6 |
| 12V AC | HJ2-AC 12V-6 | HJ4-AC 12V-6 |
| $24 V ~ A C ~$ | HJ2-AC 24V-6 | HJ4-AC 24V-6 |
| 48V AC | HJ2-AC 48V-6 | HJ4-AC 48V-6 |
| 100V AC | HJ2-AC100V-6 | HJ4-AC100V-6 |
| 120V AC | HJ2-AC120V-6 | HJ4-AC120V-6 |
| $200 V$ AC | HJ2-AC200V-6 | HJ4-AC200V-6 |
| $220 / 240 V$ AC | HJ2-AC220/240V-6 | HJ4-AC220/240V-6 |

3. Plug-in type (with diode)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-DC 12V-D-6 | HJ4-DC 12V-D-6 |
| 24V DC | HJ2-DC 24V-D-6 | HJ4-DC 24V-D-6 |
| 48V DC | HJ2-DC 48V-D-6 | HJ4-DC 48V-D-6 |
| 110V DC | HJ2-DC110V-D-6 | HJ4-DC110V-D-6 |

## 5. Plug-in type (with CR)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 100 V AC | HJ2-AC100V-R-6 | HJ4-AC100V-R-6 |
| 120 V AC | HJ2-AC120V-R-6 | HJ4-AC120V-R-6 |
| 200 V AC | HJ2-AC200V-R-6 | HJ4-AC200V-R-6 |
| $220 / 240 V$ AC | HJ2-AC220/240V-R-6 | HJ4-AC220/240V-R-6 |

Note) Packing quantity: 20pcs. (Inner carton), 200pcs. (Outer carton)

## [Without Au plating type]

## 1. Plug-in type

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-DC 12V | HJ4-DC 12V |
| 24V DC | HJ2-DC 24V | HJ4-DC 24V |
| 48 V DC | HJ2-DC 48V | HJ4-DC 48V |
| 110V DC | HJ2-DC110V | HJ4-DC110V |
| 12 V AC | HJ2-AC 12V | HJ4-AC 12V |
| 24 V AC | HJ2-AC 24 V | HJ4-AC 24V |
| 48 V AC | HJ2-AC 48V | HJ4-AC 48V |
| 100 V AC | HJ2-AC100V | HJ4-AC100V |
| 120 V AC | HJ2-AC120V | HJ4-AC120V |
| 200V AC | HJ2-AC200V | HJ4-AC200V |
| 220/240V AC | HJ2-AC220/240V | HJ4-AC220/240V |

## 3. Plug-in type (with test button)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-T-DC 12V | HJ4-T-DC 12V |
| 24V DC | HJ2-T-DC 24V | HJ4-T-DC 24V |
| 48V DC | HJ2-T-DC 48V | HJ4-T-DC 48V |
| 110 V DC | HJ2-T-DC110V | HJ4-T-DC110V |
| 12 V AC | HJ2-T-AC 12V | HJ4-T-AC 12V |
| 24 V AC | HJ2-T-AC 24V | HJ4-T-AC 24V |
| 48 V AC | HJ2-T-AC 48V | HJ4-T-AC 48V |
| 100 V AC | HJ2-T-AC100V | HJ4-T-AC100V |
| 120 V AC | HJ2-T-AC120V | HJ4-T-AC120V |
| 200 V AC | HJ2-T-AC200V | HJ4-T-AC200V |
| $220 / 240 \mathrm{~V} \mathrm{AC}$ | HJ2-T-AC220/240V | HJ4-T-AC220/240V |

2. Plug-in type (with LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-L-DC 12V-6 | HJ4-L-DC 12V-6 |
| 24V DC | HJ2-L-DC 24V-6 | HJ4-L-DC 24V-6 |
| 48V DC | HJ2-L-DC 48V-6 | HJ4-L-DC 48V-6 |
| 110V DC | HJ2-L-DC110V-6 | HJ4-L-DC110V-6 |
| 12V AC | HJ2-L-AC 12V-6 | HJ4-L-AC 12V-6 |
| 24V AC | HJ2-L-AC 24V-6 | HJ4-L-AC 24V-6 |
| 48V AC | HJ2-L-AC 48V-6 | HJ4-L-AC 48V-6 |
| 100V AC | HJ2-L-AC100V-6 | HJ4-L-AC100V-6 |
| 120V AC | HJ2-L-AC120V-6 | HJ4-L-AC120V-6 |
| $200 V$ AC | HJ2-L-AC200V-6 | HJ4-L-AC200V-6 |
| $220 / 240 V ~ A C ~$ | HJ2-L-AC220/240V-6 | HJ4-L-AC220/240V-6 |

## 4. Plug-in type (with diode and LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-L-DC 12V-D-6 | HJ4-L-DC 12V-D-6 |
| 24V DC | HJ2-L-DC 24V-D-6 | HJ4-L-DC 24V-D-6 |
| 48V DC | HJ2-L-DC 48V-D-6 | HJ4-L-DC 48V-D-6 |
| 110V DC | HJ2-L-DC110V-D-6 | HJ4-L-DC110V-D-6 |

## 6. Plug-in type (with CR and LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| $100 V$ AC | HJ2-L-AC100V-R-6 | HJ4-L-AC100V-R-6 |
| $120 V$ AC | HJ2-L-AC120V-R-6 | HJ4-L-AC120V-R-6 |
| $200 V$ AC | HJ2-L-AC200V-R-6 | HJ4-L-AC200V-R-6 |
| $220 / 240 V$ AC | HJ2-L-AC220/240V-R-6 | HJ4-L-AC220/240V-R-6 |

## 2. Plug-in type (with LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-L-DC 12V | HJ4-L-DC 12V |
| 24V DC | HJ2-L-DC 24 V | HJ4-L-DC 24V |
| 48 V DC | HJ2-L-DC 48V | HJ4-L-DC 48V |
| 110V DC | HJ2-L-DC110V | HJ4-L-DC110V |
| 12 V AC | HJ2-L-AC 12V | HJ4-L-AC 12V |
| 24 V AC | HJ2-L-AC 24V | HJ4-L-AC 24V |
| 48 V AC | HJ2-L-AC 48V | HJ4-L-AC 48V |
| 100 V AC | HJ2-L-AC100V | HJ4-L-AC100V |
| 120 V AC | HJ2-L-AC120V | HJ4-L-AC120V |
| 200V AC | HJ2-L-AC200V | HJ4-L-AC200V |
| 220/240V AC | HJ2-L-AC220/240V | HJ4-L-AC220/240V |

## 4. Plug-in type (with LED indication and test button)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12 V DC | HJ2-L-T-DC 12V | HJ4-L-T-DC 12V |
| 24 V DC | HJ2-L-T-DC 24V | HJ4-L-T-DC 24V |
| 48 V DC | HJ2-L-T-DC 48V | HJ4-L-T-DC 48V |
| 110 V DC | HJ2-L-T-DC110V | HJ4-L-T-DC110V |
| 12 VAC | HJ2-L-T-AC 12V | HJ4-L-T-AC 12V |
| 24 V AC | HJ2-L-T-AC 24V | HJ4-L-T-AC 24V |
| 48 V AC | HJ2-L-T-AC 48V | HJ4-L-T-AC 48V |
| 100 V AC | HJ2-L-T-AC100V | HJ4-L-T-AC100V |
| 120 V AC | HJ2-L-T-AC120V | HJ4-L-T-AC120V |
| 200 V AC | HJ2-L-T-AC200V | HJ4-L-T-AC200V |
| $220 / 240 \mathrm{~V}$ AC | HJ2-L-T-AC220/240V | HJ4-L-T-AC220/240V |

## 5. Plug-in type (with diode)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-DC 12V-D | HJ4-DC 12V-D |
| 24V DC | HJ2-DC 24V-D | HJ4-DC 24V-D |
| 48V DC | HJ2-DC 48V-D | HJ4-DC 48V-D |
| 110V DC | HJ2-DC110V-D | HJ4-DC110V-D |

## 7. Plug-in type (with CR)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 100 V AC | HJ2-AC100V-R | HJ4-AC100V-R |
| $120 V$ AC | HJ2-AC120V-R | HJ4-AC120V-R |
| $200 V$ AC | HJ2-AC200V-R | HJ4-AC200V-R |
| $220 / 240 V$ AC | HJ2-AC220/240V-R | HJ4-AC220/240V-R |

Note) Packing quantity: 20pcs. (Inner carton), 200pcs. (Outer carton)
6. Plug-in type (with diode and LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 12V DC | HJ2-L-DC 12V-D | HJ4-L-DC 12V-D |
| 24V DC | HJ2-L-DC 24V-D | HJ4-L-DC 24V-D |
| 48V DC | HJ2-L-DC 48V-D | HJ4-L-DC 48V-D |
| 110V DC | HJ2-L-DC110V-D | HJ4-L-DC110V-D |

8. Plug-in type (with CR and LED indication)

| Coil voltage | 2 Form C | 4 Form C |
| :---: | :---: | :---: |
|  | Part No. | Part No. |
| 100V AC | HJ2-L-AC100V-R | HJ4-L-AC100V-R |
| 120 V AC | HJ2-L-AC120V-R | HJ4-L-AC120V-R |
| 200 V AC | HJ2-L-AC200V-R | HJ4-L-AC200V-R |
| $220 / 240 V$ AC | HJ2-L-AC220/240V-R | HJ4-L-AC220/240V-R |

## [Accessories]

| Type | No. of channels | Item | Part No. |
| :---: | :---: | :---: | :---: |
| Terminal socket | 2 channels | HJ2 terminal socket | HJ2-SFD |
|  |  | HJ2 terminal socket (Finger protect type) | HJ2-SFD-S |
|  | $2 / 4$ channels | HJ4 terminal socket | HJ4-SFD |
|  | (common) | HJ4 terminal socket (Finger protect type) | HJ4-SFD-S |

Notes) 1. Packing quantity: 10pcs. (Inner carton), 100pcs. (Outer carton)
2. Use the retainer that is shipped with the terminal socket.
3. Products conform to UL, CSA and TÜV, as standard.
4. In order to prevent breakage and disfiguring, the screw tightening torque for the terminal socket should be within the range of 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$.
5. When attaching directly to a chassis, please use an M3.5 $\times 0.6$ metric coarse screw thread, a spring washer, and a hexagonal nut.
6. For S1DX timer, use the retainer (Part No. ADX18012).

## COIL DATA

DC coils

| Coil voltage <br> V DC | Pick-up voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ}$ ) (Initial) | Drop-out voltage, V DC (max.) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) (Initial) | Nominal coil current, mA $( \pm 20 \%)$ | $\begin{gathered} \text { Coil resistance, } \Omega \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right) \\ ( \pm 20 \%) \end{gathered}$ | Nominal operating power, W ( $\pm 20 \%$ ) | Max. allowable voltage, V DC (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 9.6 | 1.2 | 75 | 160 ( $\pm 10 \%$ ) | 0.9 | 13.2 |
| 24 | 19.2 | 2.4 | 37 | 650 ( $\pm 10 \%$ ) | 0.9 | 26.4 |
| 48 | 38.4 | 4.8 | 18 | 2,600 ( $\pm 15 \%$ ) | 0.9 | 52.8 |
| 110 | 88 | 11 | 10 | 11,000 ( $\pm 15 \%$ ) | 1.1 | 121 |

AC coils $(50 / 60 \mathrm{~Hz})$

| Coil voltageV AC | Pick-up voltage, <br> V AC (max.) <br> (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) <br> (Initial) | Drop-out voltage, <br> V AC (max.) <br> (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) <br> (Initial) | Nominal coil current, mA$( \pm 20 \%)$ |  | Nominal operating power, V A ( $\pm 20 \%$ ) |  | Max. allowable voltage, V AC (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 50 Hz | 60 Hz | 50 Hz | 60 Hz |  |
| 12 | 9.6 | 3.6 | 102.9 | 85.4 | Approx.$1.2 \text { to } 1.5$ | Approx. <br> 1.0 to 1.3 | 13.2 |
| 24 | 19.2 | 7.2 | 54.5 | 45.6 |  |  | 26.4 |
| 48 | 38.4 | 14.4 | 30.7 | 25.9 |  |  | 52.8 |
| 100 | 80 | 30 | 11.8 | 10.0 |  |  | 110 |
| 120 | 96 | 36 | 12.5 | 10.3 |  |  | 132 |
| 200 | 160 | 60 | 6.8 | 5.7 |  |  | 220 |
| 220/240 | 176 | 72 | 6.8/7.8 | 5.6/6.4 |  |  | 264 |

1. Plug-in type 2 Form C (including diode/CR)


2. Plug-in type 4 Form C
(including diode/CR)


$\frac{\text { Dimension: }}{\text { Max. } 1 \mathrm{~mm} .039 \text { inch: }}$
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:
Tolerance $\pm 0.1 \pm .004$ $+0.2+.012$

Schematic (Bottom view) Standard type LED AC type LED DC type



CR AC type

Diode/LED DC type


Schematic (Bottom view) Standard type LED AC type LED DC type

| $1 \underbrace{2} 34$ | 123 | 1234 |
| :---: | :---: | :---: |
| 5., 6. |  | 5 |
| $\underline{9} 1011112$ | 9101011 | 2-10 11112 |
| $13-14$ | $\frac{13}{L_{m}} \frac{14}{n^{6}}$ | $(-213-\sqrt{-14(+)}$ |



CR AC type


Diode/LED DC type
CR/LED AC type

3. Plug-in type with test button 2 Form C


## Dimension:

Max. 1mm . 039 inch:
Tolerance
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3 mm .118 inch: $\quad \pm 0.3 \pm .012$
Schematic (Bottom view) Standard type

| $\begin{aligned} & 4 \\ & 8 \\ & -12 \\ & 12 \end{aligned}$ |
| :---: |
|  |  |
|  |  |

LED AC type
$\begin{array}{ll}1 & \underline{4} \\ \underline{5}_{-1} & \underline{8}_{0} \\ \underline{9} & \underline{12}\end{array}$

LED DC type

| $\underline{1}$ | $\underline{4}$ |
| :--- | :--- |
| $\underline{5}_{0}$ | $\underline{8}_{0}$ |
| $\underline{9}$ | $\underline{12}$ |

$(-213$
4. Plug-in type with test button 4 Form $C$


Dimension:
Max. 1mm .039 inch: 1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:

Schematic (Bottom view)


Mounting hole dimensions


General tolerance: $\pm 0.5 \pm .020$

HJ2 terminal socket (Finger protect type)


Schematic (Bottom view)


Mounting hole dimensions


2-M3.118 or M4.157
or 4.5.177 dia. hole

Schematic (Bottom view)


Mounting hole dimensions


HJ4 terminal socket (Finger protect type)


General tolerance: $\pm 0.5 \pm .020$


Mounting hole dimensions


## REFERENCE DATA

1-(1). Max. switching capacity (2 Form C type)
1-(2). Max. switching capacity (4 Form C type)

2-(1). Coil temperature rise (2 Form C/AC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$



2-(2). Coil temperature rise ( 2 Form C/DC type) Measured portion: Inside the coil
Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$


3-(1). AC coil surge voltage waveform (With CR)
Tested sample: HJ4-AC200V-R


2-(3). Coil temperature rise (4 Form C/AC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$


3-(2). AC coil surge voltage waveform (Without CR)
Tested sample: HJ4-AC200V


2-(4). Coil temperature rise (4 Form C/DC type) Measured portion: Inside the coil Ambient temperature: $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$


4-(1). DC coil surge voltage waveform (Without diode)


4-(2). DC coil surge voltage waveform
(With diode)
Diode characteristics:
Reverse breakdown voltage: 1,000 V
Forward current: 1 A


## NOTES

## 1. Coil operating power

To ensure proper operation, the voltage applied to both terminals of the coil should be $\pm 5 \%$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ) the rated operating voltage of the coil. Also, be aware that the pick-up and drop-out voltages will fluctuate depending on the ambient temperature and operating conditions.

## 2. LED indications

The light of the light emitting diode is what displays operation. If voltage remains after relay dropout, the LED might illuminate briefly.

## 3. Switching lifetime

The switching lifetime is defined under the standard test condition specified in the JIS* C 5442-1996 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below.
(1) When used for AC load-operating and the operating phase is synchronous.
Rocking and fusing can easily occur due to contact shifting.
(2) High-frequency load-operating

When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and $\mathrm{HNO}_{3}$ is formed. This can corrode metal materials.
Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
4. Conditions for operation, transport and storage

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:

$$
-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F}
$$

(2) Humidity: 5 to $85 \%$ RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.

(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:
2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
5. Screwing torque of pressure screw block should be less than 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$ to avoid breaking heads and bodies. 6. Take care not to touch the button during normal usage to prevent unexpected switching. Test button should be used only to check the circuit connection.

## 7. Operation method for test button

1) Push and release (1) gently to confirm relay switching.

2) To lock to one side turn $90^{\circ}$ counterclockwise while pushing lock and turn $90^{\circ}$ clockwise to release.

8. Rating

| Standard | File No. | Ratings |  |
| :---: | :---: | :---: | :---: |
|  |  | 2 Form C | 4 Form C |
| UL | E43149 | $\begin{aligned} & \text { 7A } 250 \text { V AC } \\ & \text { 7A 30V DC } \end{aligned}$ | $\begin{aligned} & \text { 5A } 250 \text { V AC } \\ & \text { 5A 30V DC } \end{aligned}$ |
| TÜV | $\begin{aligned} & \hline \text { Std. type } \\ & \text { R } 2024382 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 \mathrm{~A} 250 \mathrm{~V} \sim \\ & (\cos \phi=1) \\ & 7 \mathrm{~A} 30 \mathrm{~V} \overline{. .} \\ & (0 \mathrm{~ms}) \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~A} 250 \mathrm{~V} \sim \\ & (\cos \phi=1) \\ & 5 \mathrm{~A} 30 \mathrm{~V} \overline{. .} \\ & (0 \mathrm{~ms}) \end{aligned}$ |
|  | Test button R 2-50006950 |  |  |
|  | CR, Diode Au plating R 50006950 |  |  |

## 9. Diode characteristics

1) Reverse breakdown voltage: $1,000 \mathrm{~V}$
2) Forward current:

1 A

## 10. Diode and CR built-in type

Since the diode and CR inside the relay coil are designed to absorb the counter emf, the element may be damaged if a large surge, etc., is applied to the diode and CR. If there is the possibility of a large surge voltage from the outside, please implement measures to absorb it.

